我国造船量虽然已位居世界前列,但造船技术与国外先进水平相比,仍有较大差距。尤其是船舶配套能力不足,相比日、韩90%以上的自给率,我国船用关键设备近80%需要进口,这已经成为我国造船业发展的瓶颈。
形成船用关键配套设备主要依赖进的主要原因之一在于高档重型数控加工设备不能满足船用关键零件的加工要求,因此,解决船用关键配套设备制造所急需的高档数控机床,特别是重型、精密的数控机床就成为当务之急。
现代大型船舶的关键配套设备几何尺寸大,精度要求高,因此要求加工设备的规格大、功率大、扭矩大和精度高。如当前我国可加工的最大螺旋桨直径为9m,随着大型船舶的发展,需要能够加工直径11m螺旋桨的7轴5联动的数控车铣床,而且对加工精度和表面粗糙度都提出更高要求。
现代大型船舶要求更高的推进效率,更低的噪声,对螺旋桨推进器等关键配套设备的加工精度要求高。因此需要采用车铣复合机床一次成形加工完成。如以车削方式实现轮毂内孔及螺纹的加工;以铣削方式完成螺旋桨叶面和叶背、导边和随边轮廓、轮毂和叶面过渡圆角等表面的加工。
而用于加工大型低速柴油机机座、机架加工的设备,不仅需要主轴功率大,扭矩大,还需要加工精度高,并配备相应的检测设备。低速柴油机曲轴的加工,多采用数控重型车铣复合加工中心,要求其回转直径要大,要有近100吨的承载能力。
根据零件的特点进行切削参数的优化和工艺方式的优化,如根据螺旋桨的几何特性,叶片加工面分为非重叠区域和重叠区域,并分别采用标准铣头和特殊铣头进行加工,以解决叶片根部的加工问题,但对于大型螺旋桨,由于滑枕承受的颠覆力矩过大对机床的寿命影响很大,因此仍是有待攻克的难题。
总体来说,大型船舶的关键加工件集中在大功率柴油机的机座、机架、气缸体、缸盖活塞杆、十字头、连杆、曲轴,以及减速箱传动轴、舵轴和推进器(螺旋桨)等,关键加工件材质为特种合金钢,一般为小批加工,要求加工成品率100%。关键加工件具有重量大、形状复杂、精度高、加工难度大等特点,需要具有大功率、大扭矩、高可靠性以及多轴的重型、超重型数控机床和专用加工机床,如重型、超重型数控龙门镗铣床、大型旋风车床、数控重型龙门铣和重型数控落地镗、数控车、磨床、深孔钻床,以及大型钢板压制、酸洗、热处理和火焰切割机等。可以预见,随着船配设备加工技术的提高,我国的船舶配套业必将提升到一个新的水平。
形成船用关键配套设备主要依赖进的主要原因之一在于高档重型数控加工设备不能满足船用关键零件的加工要求,因此,解决船用关键配套设备制造所急需的高档数控机床,特别是重型、精密的数控机床就成为当务之急。
现代大型船舶的关键配套设备几何尺寸大,精度要求高,因此要求加工设备的规格大、功率大、扭矩大和精度高。如当前我国可加工的最大螺旋桨直径为9m,随着大型船舶的发展,需要能够加工直径11m螺旋桨的7轴5联动的数控车铣床,而且对加工精度和表面粗糙度都提出更高要求。
现代大型船舶要求更高的推进效率,更低的噪声,对螺旋桨推进器等关键配套设备的加工精度要求高。因此需要采用车铣复合机床一次成形加工完成。如以车削方式实现轮毂内孔及螺纹的加工;以铣削方式完成螺旋桨叶面和叶背、导边和随边轮廓、轮毂和叶面过渡圆角等表面的加工。
而用于加工大型低速柴油机机座、机架加工的设备,不仅需要主轴功率大,扭矩大,还需要加工精度高,并配备相应的检测设备。低速柴油机曲轴的加工,多采用数控重型车铣复合加工中心,要求其回转直径要大,要有近100吨的承载能力。
根据零件的特点进行切削参数的优化和工艺方式的优化,如根据螺旋桨的几何特性,叶片加工面分为非重叠区域和重叠区域,并分别采用标准铣头和特殊铣头进行加工,以解决叶片根部的加工问题,但对于大型螺旋桨,由于滑枕承受的颠覆力矩过大对机床的寿命影响很大,因此仍是有待攻克的难题。
总体来说,大型船舶的关键加工件集中在大功率柴油机的机座、机架、气缸体、缸盖活塞杆、十字头、连杆、曲轴,以及减速箱传动轴、舵轴和推进器(螺旋桨)等,关键加工件材质为特种合金钢,一般为小批加工,要求加工成品率100%。关键加工件具有重量大、形状复杂、精度高、加工难度大等特点,需要具有大功率、大扭矩、高可靠性以及多轴的重型、超重型数控机床和专用加工机床,如重型、超重型数控龙门镗铣床、大型旋风车床、数控重型龙门铣和重型数控落地镗、数控车、磨床、深孔钻床,以及大型钢板压制、酸洗、热处理和火焰切割机等。可以预见,随着船配设备加工技术的提高,我国的船舶配套业必将提升到一个新的水平。